
 1

Version 1.0

(C) 2005-2009 Simone Zanella Productions
All rights reserved.

 2

WARNING – SERIALIZED COPY

The software xConsole® is copyrighted and its usage is conditioned upon the acceptance by the
user of the licence contract, which clearly states when and how the software can be used. Under no
circumstances the software should be distributed or transmitted to a third party in violation
of the licence contract. Since every copy of the product is serialized, SZP is always able to
determine the exact origin of an unauthorized copy thus individuating the original licensee,
who will be prosecuted to the full extent for the violation of copyright and of the licence
contract.

 3

Summary
INTRODUCTION ... 4

INSTALLATION .. 5

USING XCONSOLE® UNDER VISUAL BASIC™ ... 6

USING XCONSOLE® UNDER VISUAL C++™.. 8

XCONSOLE® METHODS... 11

XCONSOLE® PROPERTIES.. 28

XCONSOLE® EVENTS .. 32

REGULAR EXPRESSIONS .. 34

Extended regular expressions .. 34

Simple regular expressions .. 35

SOFTWARE LICENCE AGREEMENT ... 36

INDEX.. 38

 4

Introduction

xConsole® is an Active-X control that allows to quickly develop console mode applications using
common programming languages such as Visual Basic™, Delphi™, Visual C++™ and others.

Console applications created by using xConsole® are full 32 bit programs, which exploit all the
features of the Windows™ operating system and of the languages which host the control.

xConsole® was written with the aim of creating a simple and flexible tool for easily handling string
input, option selection, menus, etc.

Console applications are still useful, even when using modern graphical operating systems –
sometimes text consoles are preferred for writing system utilities to be executed at the command
line; moreover, text mode is the only way to go when applications are to be run by a Telnet Server
(most RF portable terminals are loaded with a VT or Ansi Telnet client).

The advantages offered by xConsole® are many:
1. you can write console applications even when using languages which do not support this mode

(e.g. Visual Basic™) or which have very basic functionalities (e.g. Deplhi™);
2. you can fully customize data input, thanks to a flexible event system;
3. sophisticated string input functions are available, with features ranging from masks to regular

expressions (simple and extended), validation for date and time, integer and floating point
numbers, password fields, scrolling, etc.

4. you get a full set of useful routines: single or multiple choice option lists, menus, multiline text
fields, routines for drawing lines, boxes and shadows, functions to save and restore screen
contents, to print messages (optionally accompanied by confirmation buttons), etc.

Even though Windows™ APIs allow to create text consoles, handling input and output, the highly
optimized and fully tested functionalities offered by xConsole® saves you a lot of time and let you
create faster, better working, more readable and stable applications.

 5

Installation

To install the package, insert the cd-rom in the drive of your PC, which must be running a
Windows™ operating system (95, 98, ME, NT, 2000, XP or better). Start Windows Explorer™,
select the drive letter corresponding to the drive and run the program SETUP.EXE that you will
find in the root directory.

Select your language and press Ok; read the licence, select “I agree with the terms of the licence
agreement” and press Next. Continue pressing Next (in the following forms) and wait until the
program is installed; at the end, press “Finish”.

The Active-X control will finally be registered and become available in your development
environment.

 6

Using xConsole® under Visual Basic™

xConsole® is an Active-X control; to use it, you must first configure your development
environment.

In Visual Basic™, you can do it by adding the control to the list of components (under Project
menu); at this point, the xConsole® icon will appear in the toolbox. You can now select the control
and drop it on a form, just like any other Visual Basic™ control. Since the application you are
going to develop will use a text console, there will be a single form, having the Visible attribute set
to False.

You will write your procedures and functions inside a module, referring the control inserted in the
form; text mode does not depend on events: it follows a linear flow, so you need a starting point to
begin your program (using Form_load is not reccomended).

The first method you must invoke is InitConsole (True), which creates the console used by the
following methods and resets to default all property values.

If the application you are developing is a command line utility, it could be useful to save screen size
and contents (by using MaxCol, MaxRow and the method ScreenSave), to restore everything as it
was upon exit.

You can set the colors according to your personal taste, or to the limitations of the remote portable
terminal where the application will be run. A simple but effective test to determine if the program is
being run inside Visual Basic™ IDE or is compiled are the following instructions:

Err.Clear
On Error Resume Next
Debug.Print 1 / 0
If Err.Number <> 0 Then
 ' Inside IDE
Else
 ' Compiled application
End If

You might need to Resize the screen size to match the maximum screen size of the remote
terminals.

At this point you can set length, justification, frame and shadow type and start invoking the
methods to draw user interface.
We first reccomend to write down the various screens of your application by using a text editor
(possibly one which displays current cursor position: row and column), so that you have a reference
when writing your program.

All the events for the control are fired inside the main form; you can get a list by double clicking on
the xConsole® control.

Before shutting down your application, it is reccomended to invoke ShutDownConsole to destroy
the text window (but ONLY inside the IDE).

 7

When your application is compiled, it is necessary to change its type: Visual Basic™ only creates
graphical applications. To correctly execute the compiled program you need to tell to the operating
system that your program is a console application.

You can do it in two ways:
a) using EditBin, which is installed by Visual Studio™;
b) using the command line utility ConsoleMode, which is freely shipped with xConsole® Active-

X.

This is how EditBin should be invoked:

editbin /SUBSYSTEM:CONSOLE program.exe

ConsoleMode is even simpler:

consolemode program.exe

In both cases, at the end your application will be ready to be run inside a console or a Telnet Server.

Check out the “CodQt” example for additional details and suggestions.

 8

Using xConsole® under Visual C++™

xConsole® is an Active-X control; to use it, you must first configure your development
environment.

Under Visual C++™, follow these steps:
1. create a new project and choose “MFC AppWizard (exe)”; fill in the project name and press

OK;
2. at Step 1, choose "Dialog based" and press Next;
3. at Step 2, check only “ActiveX Controls” and “Automation” (optionally check “Windows

Sockets” if required) and press Next;
4. at Step 4, choose if you want remarks and how MFC library will be linked and press Next;
5. press Finish to generate the support files.

At this point, open the dialog window and select:

Project > Add to Project > Components and Controls

From "Registered ActiveX Controls", choose XCONSOLE Control and press Insert; confirm with
Ok.
Keep the class name (CXCONSOLE) and change header and implementation file names to:

XCONSOL1.h
XCONSOL1.cpp

Confirm with Ok; at the end, close the dialog.
On the toolbox the xConsole™ icon will appear; select it and dropt it on the dialog window.
Set the property Visible of the dialog window to False (invisible window).

From the menu, choose Edit > ClassWizard; click on the tab Member Variables; in the class field
select the dialog class name; under Control_ID choose the one belonging to the xConsole™ control
(default: IDC_XCONSOLECTRL1).
Press Add Variable and set variable name to m_xc; press Ok and close ClassWizard.

Open the source file (cpp) for the dialog window and look for the function OnInitDialog; inside its
body, after the line:

// TODO: Add extra initialization here

insert the following text:

m_xc.InitConsole(TRUE);

Immediately after, invoke the function which represents the entry point of your program, using the
variable m_xc which will be passed as a pointer to a CXCONSOLE object.

Upon return from this function (i.e. end of program), insert a call to PostMessage to close the dialog
(which is useful only for hosting the xConsole® control):

[dialog name]::PostMessage(WM_CLOSE, 0, 0);

 9

Obviously, [dialog name] should be replaced by the name of your dialog (in the example,
CXcdemoDlg).

Do not forget to remove any compilation flags requesting double-byte character strings: xConsole®
only supports single byte strings.

If the application you are developing is a command line utility, it could be useful to save screen size
and contents (by using MaxCol, MaxRow and the method ScreenSave), to restore everything as it
was upon exit.

You can set the colors according to your personal taste, or to the limitations of the remote portable
terminal where the application will be run.
You might need to Resize the screen size to match the maximum screen size of the remote
terminals.

At this point you can set length, justification, frame and shadow type and start invoking the
methods to draw user interface.
We first reccomend to write down the various screens of your application by using a text editor
(possibly one which displays current cursor position: row and column), so that you have a reference
when writing your program.

To handle events fired by the control, it is necessary to write event sinks by following these steps:
1. on the View menu, click ClassWizard;
2. click the Message Maps tab;
3. in the Class name box, select the dialog box class that contains the ActiveX control;
4. in the Object IDs box, select the control ID of the embedded ActiveX control (e.g.

IDX_XCONSOLECTRL1). The Messages box displays a list of events that can be fired by the
embedded ActiveX control. Any member function shown in bold already has handler functions
assigned to it;

5. select the message you want the application to handle; press “Add Function” to add a handler,
or “Edit Code” to jump to the event handler code in the implementation (.CPP) file.

Before terminating your application, it is reccomended to invoke the method ShutDownConsole to
destroy the console you created.

When your application is compiled, it is necessary to change its type: to correctly execute the
compiled program you need to tell to the operating system that your program is a console
application.

You can do it in two ways:
c) using EditBin, which is installed by Visual Studio™;
d) using the command line utility ConsoleMode, which is freely shipped with xConsole® Active-

X.

This is how EditBin should be invoked:

editbin /SUBSYSTEM:CONSOLE program.exe

ConsoleMode is even simpler:

consolemode program.exe

 10

In both cases, at the end your application will be ready to be run inside a console or a Telnet Server.

Check out the “xcdemo” example for additional details and suggestions.

 11

xConsole® methods

Below you will find a short description of all the methods supported by the xConsole® control and
the most relevant interactions between them (emphasized by a common prefix).

The methods are printed in BLUE, the properties in RED, the events in GREEN.

Constants are always expressed as mnemonic identifiers, whose values can be looked up in the
module XCONSOLE.BAS and in the header file XCONSOLE.H.

You will find two syntaxes: the blue one refers to Visual Basic™, the gray one refers to Visual
C++™; keep in mind the following type conversions:

Visual Basic™ type Visual C++™ type
Boolean BOOL
Integer short or short * (when passed by reference)
Long long or long * (when passed by reference)
String LPCTSTR (parameter in methods)

CString (property value)
BSTR (value returned by a method)

Note:

1) All the methods having X and Y coordinates in their parameters (both implicit or explicit) adds
to them the values of OffsetX and OffsetY, so you can quickly move your masks to any place on
the screen without changing a single coordinate.

2) For performance reasons, the xConsole® control does minimum tests on the parameters with
which its methods are invoked; take care not to specify coordinates outside the screen area.

Methods (alphabetical list)

AboutBox ()
void AboutBox()

Opens a graphical dialog window displaying information about control version and
copyright. No value is returned. This is the only method which produces graphical output.

Alert (ByVal Tag as Long) as Boolean
BOOL Alert(long Tag);

Opens a box containing text and buttons; it returns True if the user selected a button, False if
he pressed Esc. Only a button at a time is displayed on screen. The behaviour of the method
is influenced by the following properties:

AlertText as String Text to be printed inside the box
AlertButtons as String Text to be displayed inside the buttons; the string must

have the following format: “button 1[#button 2..]”, i.e.
you must use the character “#” to separate one button
label from the following

 12

AlertCurrentButton as Integer Number of the default button (if invalid, the first button
becomes the default); this property is updated at the end
of the selection, even if the user presses Esc

AlertBackColor as Integer
AlertForeColor as Integer

Background and foreground colors used for printing
message text

AlertButtonBackColor as Integer
AlertButtonForeColor as Integer

Background and foreground colors used for printing
buttons

AlertFrameForeColor as Integer Background and foreground colors used for printing the
frame (the buttons have AlertButtonForeColor as the
frame color)

Frame as Boolean
Frame3D as Boolean
FrameChars as String
ShadowMode as Integer

Frame status, type and characters; shadow type (none,
right, left)

 The parameter Tag determines how the method reacts to the introduction of data by the user;

if zero, the default behaviour is the following:

cursor keys Change the button displayed, allowing to select
the answer

Enter, space Accept the current selection
Esc Exit without selection

 If Tag is not zero, whenever a key is pressed the following event is fired:

AlertKeyPress(ByRef KeyAscii as Integer, ByRef Action as Integer, ByVal Tag as Long)

 where:

KeyAscii as Integer Key pressed by the user; can be modified to fake a different key was
pressed; set to 0 to discard it

Action as String Determine the action requested in response; can be updated with one
of the values specified below

Tag as Integer User chosen identification number for this Alert

 The value of Tag can be used to discriminate which Alert is active, to adopt different

behaviours according to the circumstances.

 The possible values for Action are listed below:

ALERT_ACCEPT Process the key as usual
ALERT_DISCARD Ignore the key (same as setting KeyAscii to 0 and Action to

ALERT_ACCEPT)
ALERT_SELECT Select the button AlertCurrentButton and remove the box
ALERT_SELECTNR Select the button AlertCurrentButton and return leaving the

box on screen (no restore)
ALERT_ABORT Abort and return removing the box
ALERT_ABORTNR Abort and return leaving the box on screen (no restore)
ALERT_NEXT Display next button
ALERT_PREVIOUS Display previous button

 13

ALERT_FIRST Display first button
ALERT_LAST Display last button

Attribute () as Integer
short Attribute();
AttributeXY (ByVal X as Integer, ByVal Y as Integer) as Integer
short AttributeXY(short X, short Y);

 Returns the video attribute at current or specified coordinates. The attribute combines

foreground and background colors; you can obtain the two separate colours by applying the
method AttributeSplit to the result.

AttributeJoin (ByVal ForegroundColor as Integer, ByVal BackgroundColor as Integer) as Integer
short AttributeJoin(short ForegroundColor, short BackgroundColor);

 Returns the video attribute corresponding to the combination of the specified foreground and

background colours; it is the opposite of the method AttributeSplit.

AttributeSplit (ByVal Color as Integer, ByRef ForegroundColor as Integer,

 ByRef BackgroundColor as Integer)
void AttributeSplit(short Color, short* ForegroundColor, short* BackgroundColor);

 Splits the video attribute Color into the corresponding foreground and background color; it

is the opposite of the method AttributeJoin.

Box (ByVal Left as Integer, ByVal Top as Integer, ByVal Right as Integer, ByVal Bottom as Integer)
void Box(short Left, short Top, short Right, short Bottom);

 Draws a frame from (Left, Top) to (Right, Bottom); frame appearance depends on the

following properties:

Frame3D as Boolean Draw the frame with a pseudo-3D appearance (two sides
are darker than the others)

FrameChars as String 8-byte string which represents the characters to be used
for drawing the frame (clockwise, starting from upper
left). By default after InitConsole you can draw single
line frames (FRAME_SINGLE) by using semi-
graphical character. You can set the value to other
constants (FRAME_DOUBLE, FRAME_SNGDOU,
FRAME_DOUSNG, FRAME_DOTS) for different
appearances.

FrameBackColor as Integer
FrameForeColor as Integer

Background and foreground colours to be used for
drawing the frame.

Pattern as Integer ASCII code of the character used to fill the frame
(default is 32 = space).

ShadowMode as Integer Shadow type; possible values are:
NO_SHADOW = no shadow
SHADOW_LEFT = shadow to the left
SHADOW_RIGHT = shadow to the right

ClearArea (ByVal Left as Integer, ByVal Top as Integer, ByVal Right as Integer,

 ByVal Bottom as Integer, ByVal Color as Integer, ByVal Pattern as Integer)
void ClearArea(short Left, short Top, short Right, short Bottom, short Color, short Pattern);

 14

 Clears the area from (Left, Top) to (Right, Bottom), using the attribute Color and the

character corresponding to the ASCII code Pattern.

Cls ()
void Cls();

Clears the screen, using the current colours and fill pattern.

ColorizeArea (ByVal Left as Integer, ByVal Top as Integer, ByVal Right as Integer, ByVal Bottom

 as Integer, ByVal ForeColor as Integer, ByVal BackColor as Integer)
void ColorizeArea(short Left, short Top, short Right, short Bottom, short ForeColor, short BackColor);

Replaces the foreground and background colors in the delimited area with those specified.

GetMaxColRow ()
void GetMaxColRow();

Sets MaxCol and MaxRow to the number of columns and rows that the screen holds.
Usually, it is not necessary to invoke this method, because both InitConsole and Resize
automatically update these properties.

GetXY ()
void GetXY();

Sets X and Y to the current cursor position.

GotoXY (ByVal X as Integer, ByVal Y as Integer)
void GotoXY(short X, short Y);

Moves the cursor to the specified coordinates and update the properties X and Y; it is
possible to achieve the same result by separately setting the two properties.

HPrint (ByVal Text as String) as Integer
short HPrint(LPCTSTR Text);
HPrintXY (ByVal X as Integer, ByVal Y as Integer, ByVal Text as String) as Integer
short HPrintXY(short X, short Y, LPCTSTR Text);

Prints Text at the current or specified coordinates, enhancing each character prefixed by the
symbol “~”; returns the number of lines used (or –1 if justification is impossible). The
appearance of the printed text depends on the following properties:

ForegroundColor as Integer
BackgroundColor as Integer

Background and foreground colours used

Justification as Integer Justification; can be set to any of these values:
J_NOJUST = No justification
J_LEFT = Align to the left
J_CENTER = Center text
J_RIGHT = Align to the right
J_JUST = Full justification

JustificationLength as Integer Justification length (should always be greater than or
equal to the length of the text being justified)

 15

Pattern as Integer ASCII code of the character used to fill the string for
justification

If X = 0, the method does nothing (emulation mode) but calculates and returns the number of
lines needed for printing.

HiColor (ByVal Color as Integer) as Integer
short HiColor(short Color);

Returns the video attribute corresponding to Color enhanced. This is the transformation
function invoked by HPrint and other functions.

InitConsole (ByVal UseExisting as Boolean)
void InitConsole(long UseExisting);

Initializes the control and sets all properties to their default values; it is necessary to invoke
this method before any other and before accessing any control property. The parameter
UseExisting lets you choose if you want to use the console associated with the process
(True, default) or creating a new one (False).

InputString (ByVal Tag as Integer) as Boolean
BOOL InputString(long Tag);
InputStringXY (ByVal X as Integer, ByVal Y as Integer, ByVal Tag as Integer) as Boolean
BOOL InputStringXY(short X, short Y, long Tag);

 String input, with optional validation; the second form allows to specify the starting point

for input, the first one uses current cursor coordinates. Returns True if the user confirmed
with Enter, False if he aborted with Esc. The behaviour of this method is influenced by the
following properties:

InputDefault as String Initial value for the string (it holds the edited value upon

return); this property gets updated even if the user
presses Esc

InputMaxLength as Integer Maximum accepted length for the string
InputWindowLength as Integer Editing window width (in columns)
InputStartPos as Integer Position inside editing window; this property gets

updated even if the user presses Esc
InputWindowOffset as Integer Editing window offset (relative to the beginning of the

string); this property gets updated even if the user
presses Esc

InsertMode as Boolean Insert mode status: when True, every character typed
moves forward the following characters; when False,
every character overwrites the existing one; this
property gets updated even if the user presses Esc

InputBackColor as Integer
InputForeColor as Integer

Foreground and background colours used

InputPicture as String Input mask to automatically validate what is typed;
when empty, no validation takes place. The table below
illustrates the possible values.

DateType as Integer
Epoch as Integer

Date and time formats, used for date/time validation.

SilentMode as Boolean If True, no acoustic warning will be played when

 16

validation fails (the event SoundRequest will be fired
anyway)

The characters in InputPicture have the following meaning:

! convert all alphabetical characters to upper case
* print “*” in place of any character typed (e.g. password request)
N accept an integer number
F accept an integer or decimal number
D accept a date; the interpretation depends on the properties DateType and Epoch.

The first one can take one of the following values:

DATE_US = american format (month/day/year)
DATE_EUROPE = european format (day/month/year)
DATE_JAPAN = japanese format (year/month/day)

Epoch determines how years should be interpreted in short dates (where only two
digits are used to specify the year); in this case, if the last two digits of the year are
below the last two digits in Epoch, the year is considered in the following century,
otherwise in the same century; e.g.

Epoch = 1970

Year in: 01/01/69 = 2069
Year in: 01/01/70 = 1970
Year in: 01/01/97 = 1997

H accept a time in the format “hh:mm:ssx”, where mm and ss are between 0 and 59, hh
is between 1 and 12 (if x is “p” or “a”) or between 0 and 23 (if x is a space or is
missing); x must be “a”, “A”, “p”, “P” or a space

Rs string is validated only if it satisfies s (extended regular expression)
Ts string is validated only if it satisfies s (case unsensitive extended regular expression)
Ps string is validated only if it satisfies s (regular expression)
Os string is validated only if it satisfies s (case unsensitive regular expression)
Ms specify a mask for data input; s can include the following characters:

X = any character
N = digit 0-9
O = digit 0-7
H = digit 0-9 or A-H
B = digit 0 or 1
A = alphabetical character
U = alphabetical character or digit (0-9)
other = literal character

 For additional information on regular expressions please consult the chapter later in this
manual.

 The paramater Tag determines how the method react to the data being typed by the user; if

zero, the default behaviour is the following:

 17

left and right cursor keys move the cursor inside editing buffer
Enter confirm what was typed; if validation fails, a

sound is played and the user remains in editing
mode

Backspace/Canc delete previous or currenct character
Esc abort
Ins switch between insert and overwrite mode

(cursor shape and InsertMode value change)
Home move the cursor to the beginning of the line
End move the cursor to the end of the line
Other character between 32 and 255 accept the character into the string (if validation

rules are satisfied)

 If Tag is not zero, whenever a key is pressed the following event is fired:

InputKeyPress(ByRef KeyAscii as Integer, ByRef Action as Integer, ByVal Tag as Long)

 where:

KeyAscii as Integer Key pressed by the user; can be modified to fake a different key was
pressed; set to 0 to discard it

Action as String Determine the action requested in response; can be updated with one
of the values specified below

Tag as Integer User chosen identification number for this InputString

 The value of Tag can be used to discriminate which InputString is active, to adopt different

behaviours according to the circumstances.

 The possible values for Action are listed below:

ALERT_ACCEPT Process the key as usual
ALERT_DISCARD Ignore the key (same as setting KeyAscii to 0 and Action to

ALERT_ACCEPT)
ALERT_SELECT Select the button AlertCurrentButton and remove the box
ALERT_SELECTNR Select the button AlertCurrentButton and return leaving the

box on screen (no restore)
ALERT_ABORT Abort and return removing the box
ALERT_ABORTNR Abort and return leaving the box on screen (no restore)
ALERT_NEXT Display next button
ALERT_PREVIOUS Display previous button
ALERT_FIRST Display first button
ALERT_LAST Display last button

INPUT_ACCEPT Process the key as usual
INPUT_UPDATE InputDefault modified; update editing buffer and

continue
INPUT_UPDATEANDCONFIRM InputDefault modified; update editing buffer and

accept the new string
INPUT_ABORT Abort and return

 18

INPUT_CONFIRM Confirm input
INPUT_DISCARD Ignore the key
INPUT_LEFT Move cursor to the left
INPUT_RIGHT Move cursor to the right
INPUT_HOME Move cursor to the beginning of the input field
INPUT_END Move cursor to the end of the input field

KeyHit () as Long
long KeyHit();

 Returns the code of the next key available in the keyboard buffer, or zero if the buffer is

empty. This method returns immediately; the key is not removed from the keyboard buffer.
KeyHit takes into account keys stuffed using KeyStuff. Use KeyInput or KeyInputTimed to
read the key and remove it from the buffer.

KeyInput () as Long
long KeyInput();

 Waits for a keypress and returns its code; takes into account keys stuffed using KeyStuff.

This method stops program execution until a key becomes available; use KeyHit to
determine if a key is available without removing it from keyboard buffer. Use
KeyInputTimed if you need a timeout for input.

KeyInputTimed (ByVal Seconds as Integer) as Long
long KeyInputTimed(short Seconds);

 Waits for a keypress (with timeout) and returns its code; takes into account keys stuffed

using KeyStuff. This method stops program execution until a key becomes available or the
timeout expires; use KeyHit to determine if a key is available without removing it from
keyboard buffer. If Seconds is zero, this method is functionally the same as KeyInput. Use
KeyHit to determine if a key is available without removing it from keyboard buffer.

KeyStuff (ByVal KeyAscii as Long)
void KeyStuff(long KeyAscii);

 Stuffs the key corresponding to KeyAscii into keyboard buffer; all the methods in

xConsole® take into account keys stuffed using this method, exactly as if the user had typed
them using the keyboard.

LineFromTo (ByVal Left as Integer, ByVal Top as Integer, ByVal Right as Integer,

 ByVal Bottom as Integer)
void LineFromTo(short Left, short Top, short Right, short Bottom);

Draws a line from (Left, Top) to (Right, Bottom), using the first character of the property
LineCharsHV if the line is horizontal or the second if it is vertical; if LineCharsHV is
undefined or too short, the method uses character 2 and 4 of the property FrameChars. The
colours used are FrameForeColor and FrameBackColor.
Only horizontal and vertical lines can be drawn using this method.

List (ByVal Tag as Integer) as Boolean
BOOL List(long Tag);
ListXY (ByVal X as Integer, ByVal Y as Integer, ByVal Tag as Integer) as Boolean
BOOL ListXY(short sX, short sY, long Tag);

 19

 Opens a box on screen filled with a list of options, using the current or specified coordinates;
returns True if the user confirmed the selection, False if he aborted pressing Esc. The
behaviour of the method is influenced by the following properties:

ListTitle as String title for the list of options (printed on the top frame,

centered); visible only if frame is enabled
ListOptions as String text for options; the string must have the following

format: “option 1[#option 2..]”, i.e. use the character “#”
to separate one option from the following

ListCurrentOption as Integer option currently selected; this property is updated upon
exiting, even if the user pressed Esc

ListRows as Integer number of visible lines
ListColumns as Integer visible width (if 0, the length of the longest option is

used)
ListWindowOffset as Integer offset for printing options (number of characters to skip

at the beginning of every option); this property is
updated at the end of the selection, even if the user
pressed Esc

ListCurrentLine as Integer line where the selected option is displayed (default: 0);
updated at the end of the selection

ListMultiSelect as Boolean (dis)allow multiple selections
ListSelection as Integer ASCII code of the character used to show that an option

is selected when multiple selections are allowed
(default: 16)

ListMap as String empty string (if ListMultiSelect = False), or string
where each character is “0” or “1” according to the
selection status of each option (“0” = unselected, “1” =
selected); this property is updated at the end of the
selection, even if the user pressed Esc

TitleBackColor as Integer
TitleForeColor as Integer

background and foreground colours used to print the
title

SelectedBackColor as Integer
SelectedForeColor as Integer

background and foreground colours used to print the
current option

UnselectedBackColor as Integer
UnselectedForeColor as Integer

background and foreground colours used to print all the
options (except the current one); background for the
frame

ListFrameForeColor as Integer foreground colour for the frame and for the thumb
elevator

Frame as Boolean
Frame3D as Boolean
FrameChars as String
ShadowMode as Integer

frame status, type and characters used to draw it;
shadow type

 The parameter Tag determines how the method react to the data being typed by the user; if

zero, the default behaviour is the following:

cursor keys change current option (up/down) or the
horizontal offset (left/right)

Enter select the current option (and return, if
ListMultiSelect is False)

Space select the current option and move to the next

 20

(only if ListMultiSelect is True)
Esc abort
Ctrl+Enter confirm selection (only if ListMultiSelect is

True)
Tab change selection status for all the options (select

or deselect all the options)
Home jump to the first option
End jump to the last option

 If Tag is not zero, whenever a key is pressed the following event is fired:

ListKeyPress(ByRef KeyAscii as Integer, ByRef Action as Integer, ByVal Tag as Long)

 where:

KeyAscii as Integer Key pressed by the user; can be modified to fake a different key was
pressed; set to 0 to discard it

Action as String Determine the action requested in response; can be updated with one
of the values specified below

Tag as Integer User chosen identification number for this List

 The value of Tag can be used to discriminate which List is active, to adopt different

behaviours according to the circumstances.

 The possible values for Action are listed below:

LIST_ACCEPT Process the key as usual
LIST_DISCARD Ignore the key
LIST_SELECT Select the option ListCurrentOption (and remove the box, if

ListMultiSelect is False)
LIST_SELECTNR Select the option ListCurrentOption (and leave the box on screen, if

ListMultiSelect is False)
LIST_ENDSEL Only when ListMultiSelect is True: confirm selection and remove

box from screen
LIST_ENDSELNR Only when ListMultiSelect is True: confirm selection and leave the

box on screen)
LIST_ABORT Abort and remove box from screen
LIST_ABORTNR Abort and leave box on screen
LIST_ENHANCE Jump to ListCurrentOption
LIST_NEXT Move to next option
LIST_PREVIOUS Move to previous option
LIST_FIRST Jump to first option
LIST_LAST Jump to last option
LIST_REDRAW Redraw the list (ListWindowOffset was modified)

Menu (ByVal Tag as Integer) as Boolean
BOOL Menu(long Tag);
MenuXY (ByVal X as Integer, ByVal Y as Integer, ByVal Tag as Integer) as Boolean
BOOL MenuXY(short X, short Y, long Tag);

 21

 Opens a box on screen filled with a list of options, using the current or specified coordinates;
returns True if the user confirmed the selection, False if he aborted pressing Esc. The
behaviour of the method is influenced by the following properties:

MenuOptions as String options in the menu; the string must have the following

format:

“option 1[|description 1]#option 2[|description 2]..”

i.e. use the character “#” to separate the options and
the character “|” to separate the option from its
description. If optionx is empty, descriptionx is the
character that will be used to fill the separation line;
use “|” alone to get an empty line

MenuUnselectable as String string where each character is “0” (selectable option)
or “1” (unselectable option); if an option has no
matching character in MenuUnselectable then it is
selectable

MenuCurrentOption as Integer current option number; this property is updated at the
end of the selection, even if the user pressed Esc

SelectedBackColor as Integer
SelectedForeColor as Integer

foreground and background colours for current option

UnselectedBackColor as Integer
UnselectedForeColor as Integer

background and foreground colours used to print all
the options (except the current one); background for
the frame

UnselectableBackColor as Integer
UnselectableForeColor as Integer

background and foreground colours used to print
unselectable options

MenuFrameForeColor as Integer foreground colour for the frame
Frame as Boolean
Frame3D as Boolean
FrameChars as String
ShadowMode as Integer

frame status, type and characters used to draw it;
shadow type

ScoreboardBackColor as Integer
ScoreboardForeColor as Integer

foreground and background colours used to print
descriptions

ScoreboardStatus as Boolean
ScoreboardX as Integer
ScoreboardY as Integer
ScoreboardJustification as Integer
ScoreboardLength as Integer

determine if descriptions are printed, their position and
the justification

 Descriptions are a brief note that accompany every menu item; they are displayed whenever

an option become the current option, using the properties Scoreboard[..].

 The parameter Tag determines how the method react to the data being typed by the user; if

zero, the default behaviour is the following:

cursor up/down change current option
Enter, right cursor, space select the current option
Esc abort
Home, PagUp Jump to the first option
End, PadDn jump to the last option

 22

 Every character prefixed by “~” (ASCII 126) inside an option appears enhanced onscreen

and becomes the key for direct selection of the item.

 If Tag is not zero, whenever a key is pressed the following event is fired:

MenuKeyPress(ByRef KeyAscii as Integer, ByRef Action as Integer, ByVal Tag as Long)

 where:

KeyAscii as Integer Key pressed by the user; can be modified to fake a different key was
pressed; set to 0 to discard it

Action as String Determine the action requested in response; can be updated with one
of the values specified below

Tag as Integer User chosen identification number for this Menu

 The value of Tag can be used to discriminate which Menu is active, to adopt different

behaviours according to the circumstances.

 The possible values for Action are listed below:

MENU_ACCEPT process key as usual
MENU_DISCARD ignore key
MENU_SELECT select MenuCurrentOption, return True
MENU_SELECTNR select MenuCurrentOption, return True and leave menu box on

screen (no restore)
MENU_ABORT return False and remove menu box from screen
MENU_ABORTNR return False and leave menu box on screen
MENU_ENHANCE jump to MenuCurrentOption
MENU_NEXT move to the next option
MENU_PREVIOUS move to the previous option
MENU_FIRST jump to the first option
MENU_LAST jump to the last option
MENU_ENABLE process MenuUnselectable again, changing the “selectable” status

of every menu item

OSD (ByVal Text as String) as String
CString OSD(LPCTSTR Text);

Opens a window in the center of the screen containing the specified text; returns a string
which can be used by OSDRestore to restore the underlying video. The behaviour is
influenced by the following properties:

AlertBackColor as Integer
AlertForeColor as Integer

background and foreground colours used for printing the
text of the message

AlertFrameForeColor as Integer foreground colour for the frame
Frame as Boolean
Frame3D as Boolean
FrameChars as String
ShadowMode as Integer

frame status, type and characters used to draw it;
shadow type

 23

 Every character prefixed by “~” is printed using enhanced colours.

OSDRestore (ByVal Screen as String)
void OSDRestore(LPCTSTR OSDBuffer);

Restores the contents of the screen overwritten by a previous call to OSD; Screen must have
been previously returned by a previous call to OSD.

Resize (ByVal Width as Integer, ByVal Height as Integer)
void Resize(short Width, short Height);

Changes the size of the console to those specified (if possible); if successfull, the properties
MaxCol and MaxRow become equal to Width and Height.

ReverseArea (ByVal Left as Integer, ByVal Top as Integer, ByVal Right as Integer,

 ByVal Bottom as Integer)
void ReverseArea(short Left, short Top, short Right, short Bottom);

Reverses video colours in the area from (Left, Top) to (Right, Bottom).

SPrint (ByVal Text as String) as Integer
short SPrint(LPCTSTR Text);
SPrintXY (ByVal X as Integer, ByVal Y as Integer, ByVal Text as String) as Integer
short SPrintXY(short X, short Y, LPCTSTR Text);

Prints Text at the current or specified coordinates; returns the number of lines used (or –1 if
justification is impossible). The appearance of the printed text depends on the following
properties:

ForegroundColor as Integer
BackgroundColor as Integer

Background and foreground colours used

Justification as Integer Justification; can be set to any of these values:
J_NOJUST = No justification
J_LEFT = Align to the left
J_CENTER = Center text
J_RIGHT = Align to the right
J_JUST = Full justification

JustificationLength as Integer Justification length (should always be greater than or
equal to the length of the text being justified)

Pattern as Integer ASCII code of the character used to fill the string for
justification

If X = 0, the method does nothing (emulation mode) but calculates and returns the number of
lines needed for printing. See also HPrint.

ScreenClear (ByVal Left as Integer, ByVal Top as Integer, ByVal Right as Integer,

 ByVal Bottom as Integer)
void ScreenClear(short Left, short Top, short Right, short Bottom);

 Clears the area from (Left, Top) to (Right, Bottom). The colours used are ForegroundColor
and BackgroundColor, the character to fill the area is Pattern.

 24

ScreenRestore (ByVal Left as Integer, ByVal Top as Integer, ByVal Right as Integer,
 ByVal Bottom as Integer, ByVal Screen as String)

void ScreenRestore(short Left, short Top, short Right, short Bottom, LPCTSTR ScreenBuffer);

Restores the video block Screen (obtained with a previous call to ScreenSave) at the
specified coordinates. Destination area size must match the source (width and height);
coordinates can be different.

ScreenSave (ByVal Left as Integer, ByVal Top as Integer, ByVal Right as Integer,

 ByVal Bottom as Integer) as String
CString ScreenSave(short Left, short Top, short Right, short Bottom);

Returns a string representing the video block (text and attributes) for the area going from
(Left, Top) to (Right, Bottom); this area can later be restore by using ScreenRestore.

ScrollHorizontally (ByVal Left as Integer, ByVal Top as Integer, ByVal Right as Integer,

 ByVal Bottom as Integer, ByVal Columns as Integer)
void ScrollHorizontally(short Left, short Top, short Right, short Bottom, short Columns);

Scrolls horizontally the specified area; scrolls left if Columns is positive, scrolls right
otherwise.

ScrollVertically (ByVal Left as Integer, ByVal Top as Integer, ByVal Right as Integer,

 ByVal Bottom as Integer, ByVal Rows as Integer)
void ScrollVertically(short Left, short Top, short Right, short Bottom, short Rows);

Scrolls vertically the specified area; scrolls up if Columns is positive, scrolls down
otherwise.

SettingsRestore (ByVal Settings as String)
void SettingsRestore(LPCTSTR SavedSettings);

Restores all the properties of the control; Settings must have been returned by a previous call
to SettingsSave.

SettingsSave () as String
CString SettingsSave();

Returns a string which stores all the current values for the properties of the control; in this
way, it is possible to make any change (including recursive calls) as long as you restore the
original values by using SettingsRestore between calls.

Shadow (ByVal Left as Integer, ByVal Top as Integer, ByVal Right as Integer,

 ByVal Bottom as Integer)
void Shadow(short Left, short Top, short Right, short Bottom);

Paints a shadow for the area from (Left, Top) to (Right, Bottom); the kind of shadow depends
on the property ShadowMode, which can take one of the following values:

NO_SHADOW = no shadow
SHADOW_LEFT = shadow to the left
SHADOW_RIGHT = shadow to the right

 25

ShutdownConsole ()
void ShutDownConsole();

Closes the handle and frees the console allocated by InitConsole; this should be the last
method invoked before terminating your program. Usually, it is not necessary to make an
explicit call to this method: when your program ends, all the handles belonging to the
process (including the console) are automatically closed.

TextBox (ByVal Tag as Integer) as Boolean
BOOL TextBox(long Tag);
TextBoxXY (ByVal X as Integer, ByVal Y as Integer, ByVal Tag as Integer) as Boolean
BOOL TextBoxXY(short X, short Y, long Tag);

 Allows to edit a rectangular text buffer, at the current or specified coordinates; returns True

if the user confirmed the editing (Enter at the last line, or Ctrl+Enter anywhere), False if he
pressed Esc. The behaviour is influenced by the following properties:

TextBoxDefault as String initial buffer value (and resulting buffer upon return);

this property is updated even when the user pressed Esc
TextBoxColumns as Integer number of columns for the editing window
TextBoxRows as Integer number of lines for the editing window
TextBoxStartPosition as Integer cursor position in the rectangular buffer; this property is

updated even when the user pressed Esc
InsertMode as Boolean insert mode status: if True, every character typed moves

forward the following characters; if False, it overwrites
the current character; this property is updated even when
the user pressed Esc

TextBoxBackColor as Integer
TextBoxForeColor as Integer

foreground and background colours for the editing
window

SilentMode as Boolean if True, no acoustic warning will be played upon error
(SoundRequest will be fired anyway)

 The parameter Tag determines how the method react to the data being typed by the user; if

zero, the default behaviour is the following:

Ctrl+Enter, Enter on the last line Confirm editing
Esc Abort editing
Tasti cursore Navigate area
Home, End Start/end of line
Ctrl+Home, Ctrl+End Start/end of buffer
Ctrl+Left, Ctrl+Right Previous/next word
Delete Delete current character and move backward the rest of

the text
Backspace Delete previous characters and move backward the rest

of the text
Enter Insert spaces until the end of the line (move to the next

line what follows) if insert mode is enabled; otherwise,
insert a paragraph break at the end of the current line (if
possible)

Ctrl+Y Delete current line
Ins Change cursor shape and insert mode status

 26

Ctrl+B Show/hide paragraph breaks
Ctrl+W Move to the beginning of the next line the word to the

left (wrap)
Ctrl+E Move the cursor at the end of the word being edited
Ctrl+N Clear the buffer and move cursor to the beginning
Ctrl+S Save current buffer (checkpoint)
Ctrl+L Restore buffer to the last checkpoint

 Paragraph breaks are handled by introducing in the text the symbol chr(255), which is

invisible in console mode. Upon exiting the method, remember to replace this symbol with a
space before using the string, because in graphical mode this symbol is usually visible.

 If Tag is not zero, whenever a key is pressed the following event is fired:

TextBoxKeyPress(ByRef KeyAscii as Integer, ByRef Action as Integer, ByVal Tag as Long)

 where:

KeyAscii as Integer Key pressed by the user; can be modified to fake a different key was
pressed; set to 0 to discard it

Action as String Determine the action requested in response; can be updated with one
of the values specified below

Tag as Integer User chosen identification number for this TextBox

 The value of Tag can be used to discriminate which TextBox is active, to adopt different

behaviours according to the circumstances.

 The possible values for Action are listed below:

TEXTBOX_ACCEPT Accept character into buffer
TEXTBOX_UPDATE Buffer updated, continue editing
TEXTBOX_UPDATEANDCONFIRM Buffer updated, confirm editing
TEXTBOX_ABORT Abort
TEXTBOX_CONFIRM Confirm input
TEXTBOX_DISCARD Discard character
TEXTBOX_LEFT Move cursor to the left
TEXTBOX_RIGHT Move cursor to the right
TEXTBOX_HOME Move cursor to the beginning
TEXTBOX_END Move cursor to the end
TEXTBOX_DELLINE Delete current line
TEXTBOX_BOL Jump to the beginning of the line
TEXTBOX_EOL Jump to the end of the line
TEXTBOX_PWORD Next word
TEXTBOX_NWORD Previous word
TEXTBOX_PARSIGN Hide/Display paragraph breaks
TEXTBOX_WRAP Move to the beginning of the next line the word to

the left (wrap)
TEXTBOX_EOW Move the cursor to the end of the word being

edited
TEXTBOX_CLEAR Clear buffer and move cursor at the beginning of

 27

the string
TEXTBOX_CHKRESTORE Restore buffer to the last checkpoint
TEXTBOX_CHECKPOINT Saves checkpoint

ThumbElevator (ByVal Current as Long, ByVal Total as Long, ByVal Column as Integer,

ByVal FirstRow as Integer, ByVal LastRow as Integer, ByVal ForeColor as Integer,
ByVal BackColor as Integer, ByRef LastPosition as Integer)

void ThumbElevator(long Current, long Total, short Column, short FirstRow, short LastRow, short ForeColor,
short BackColor, short* LastPosition);

Draws a thumb elevator from (Column, FirstRow) to (Column, LastRow), using the colours
ForeColor / BackColor. Current is the initial value (start from 0), Total is the maximum
value; LastPosition keeps the cursor position and is updated upon return; if it is –1, the
thumb elevator is completely redrawn (use it as the initial value).

Tone (ByVal Frequency as Long, ByVal Duration as Long)
void Tone(long Frequency, long Duration);

Plays a sound tone using the specified frequency (in Hertz) and duration (in milliseconds).
If the property SilentMode is True, no sound is played and the following event is fired:

SoundRequest (ByVal Frequency as Long, ByVal Duration as Long)

In this way, the user has the opportunity of giving an alternate signal, or sending specific
escape sequences to produce sound on the remote terminal.

 28

xConsole® properties

Below you will find a short description of all the properties supported by the xConsole® control
and the most relevant interactions between them (emphasized by a common prefix).

The methods are printed in BLUE, the properties in RED.

Constants are always expressed as mnemonic identifiers, whose values can be looked up in the
module XCONSOLE.BAS and in the header file XCONSOLE.H.

The descriptions you will find refer to Visual Basic™; keep in mind the following type
conversions:

Visual Basic™ type Visual C++™ type
Boolean BOOL
Integer short or short * (when passed by reference)
Long long or long * (when passed by reference)
String LPCTSTR (parameter in methods)

CString (property value)
BSTR (value returned by a method)

Under Visual C++™ all the properties of the control are set by invoking functions whose name is
the same of the property, prefixed by “Set”; these functions all have a single parameter, which is the
value to be assigned to the property; e.g. MenuOptions is set with:

SetMenuOptions(options);

In the same way, when you need to get the value of a property you use a pseudo-function with the
prefix “Get”:

options = GetMenuOptions();

All methods having two variants (with and without “XY” suffix) are referred to with the simplest
form. All properties are read/write.

Alphabetical list of the properties (see related methods for additional information):

AlertBackColor as Integer Background color for Alert
AlertButtonBackColor as Integer Background button color for Alert
AlertButtonForeColor as Integer Foreground button color for Alert
AlertButtons as String Button labels for Alert
AlertCurrentButton as Integer Current button index for Alert
AlertForeColor as Integer Foreground color for Alert
AlertFrameForeColor as Integer Foreground frame color for Alert
AlertText as String Alert message
BackgroundColor as Integer Background color for SPrint, Hprint
ConsoleTitle as String Window title (only visible when the program is

not run full screen)
CursorType as Integer Cursor type; possible values:

 29

CUR_OFF = hidden cursor
CUR_BIG = block
CUR_SMALL = underline
Changing the property immediately set the
cursor to the new type.

DateType as Integer Date format, used for automatic date validation
in InputString; possible values:
DATE_US = month/day/year
DATE_EUROPE = day/month/year
DATE_JAPAN = year/month/day

Epoch as Integer Epoch, used for automatic date validation in
InputString.
Epoch determines how years should be
interpreted in short dates (where only two digits
are used to specify the year); in this case, if the
last two digits of the year are below the last two
digits in Epoch, the year is considered in the
following century, otherwise in the same
century.

ForegroundColor as Integer Foreground color for SPrint, Hprint
Frame as Boolean Flag that determines if a frame will be added

when using methods such as Alert, List, OSD,
etc.

Frame3D as Boolean Flag that determines if the frame will be drawn
with a 3D effect (two sides are darker than the
others)

FrameBackColor as Integer Background color for Box
FrameChars as String(8) 8-byte string which represents the characters to

be used for drawing the frame (clockwise,
starting from upper left). By default after
InitConsole you can draw single line frames
(FRAME_SINGLE) by using semi-graphical
character. You can set the value to other
constants (FRAME_DOUBLE,
FRAME_SNGDOU, FRAME_DOUSNG,
FRAME_DOTS) for different appearances.

FrameForeColor as Integer Foreground color for Box
FullScreen as Boolean Determines if an application is running in a

window (False) or full screen (True)
InputBackColor as Integer Background color for InputString
InputCodePage as Long CodePage used for input
InputDefault as String Default/return value for InputString
InputForeColor as Integer Foreground for InputString
InputMaxLength as Integer Maximum string length for InputString
InputPicture as String Validation format for InputString
InputStartPos as Integer Initial cursor position for InputString
InputWindowLength as Integer Width of the editing window for InputString
InputWindowOffset as Integer Offset in editing window for InputString
InsertMode as Boolean Insert/overwrite mode, used by InputString and

TextBox

 30

Justification as Integer Text justification for SPrint, HPrint; possible
values:
J_NOJUST = No justification
J_LEFT = Align to the left
J_CENTER = Center text
J_RIGHT = Align to the right
J_JUST = Full justification

JustificationLength as Integer Justification length for SPrint, Hprint
KeyLast as Long Value of the last key read by KeyInput;

read/write property
LineCharsHV as String(2) 2-character string that influences LineFromTo;

the first character is used to draw horizontal
lines, the second character is used for vertical
lines

ListColumns as Integer Number of columns filled by List options
ListCurrentLine as Integer Current line for List
ListCurrentOption as Integer Current option for List
ListFrameForeColor as Integer Frame foreground color for List
ListMap as String Selection map of the options for List
ListMultiSelect as Boolean Allow multiple selections in List
ListOptions as String Options for List
ListRows as Integer Number of rows for the options in List
ListSelection as Integer Selection character for List
ListTitle as String Title for List box
ListWindowOffset as Integer Offset for the options (number of characters to

be skipped) in List
MaxCol as Integer Screen columns
MaxRow as Integer Screen rows
MenuCurrentOption as Integer Current option for Menu
MenuFrameForeColor as Integer Frame foreground color for Menu
MenuOptions as String Option list (and description) for Menu
MenuUnselectable as String Unselectable option map for Menu
OffsetX as Integer Horizontal shift
OffsetY as Integer Vertical shift
OutputCodePage as Long CodePage used (useful only when FullScreen is

True)
Pattern as Integer Character used when clearing/filling an area
ScoreboardBackColor as Integer Background color for descriptions (Menu)
ScoreboardForeColor as Integer Foreground color for descriptions (Menu)
ScoreboardJustification as Integer Justification for descriptions (Menu)
ScoreboardLength as Integer Justification length for descriptions (Menu)
ScoreboardStatus as Boolean Enable/disable printing descriptions (Menu)
ScoreboardX as Integer Column for printing descriptions (Menu)
ScoreboardY as Integer Row for printing descriptions (Menu)
SelectedBackColor as Integer Background color for current option (List,

Menu)
SelectedForeColor as Integer Foreground color for current option (List, Menu)
ShadowMode as Integer Shadow type; possible values:

NO_SHADOW = no shadow
SHADOW_LEFT = left shadow

 31

SHADOW_RIGHT = right shadow
The shadow is added automatically when a
Box is drawn (explicitly or implicitly)

SilentMode as Boolean Flag: if false, Tone plays a sound; if true, Tone
fires the event SoundRequest

TextBoxBackColor as Integer Background color for TextBox
TextBoxColumns as Integer Number of columns for TextBox
TextBoxDefault as String Default/return text for TextBox
TextBoxForeColor as Integer Foreground color for TextBox
TextBoxRows as Integer Number of rows for TextBox
TextBoxStartPosition as Integer Starting position in buffer for TextBox
ThumbElevatorChars as String(4) 4-character string that defines the characters to

be used for drawing the thumb elevator:
1 – upper terminator
2 – lower terminator
3 – background
4 – elevator

TitleBackColor as Integer Background title color for List
TitleForeColor as Integer Foreground title color for List
UnselectableBackColor as Integer Background color for unselectable options in

Menu
UnselectableForeColor as Integer Foreground color for unselectable options in

Menu
UnselectedBackColor as Integer Background color for unselected options in List,

Menu
UnselectedForeColor as Integer Foreground color for unselected options in

List, Menu
X as Integer Cursor column; read/write property (when the

value is updated, the cursor is immediately
repositioned to the new coordinate)

Y as Integer Cursor row; read/write property (when the value
is updated, the cursor is immediately
repositioned to the new coordinate)

 32

xConsole® events

Below you will find a short description of all the events fired by the xConsole® control.
The methods are printed in BLUE, the properties in RED, the events in GREEN.

Constants are always expressed as mnemonic identifiers, whose values can be looked up in the
module XCONSOLE.BAS and in the header file XCONSOLE.H.

The descriptions you will find refer to Visual Basic™; keep in mind the following type
conversions:

Visual Basic™ type Visual C++™ type
Boolean BOOL
Integer short or short * (when passed by reference)
Long long or long * (when passed by reference)
String LPCTSTR (parameter in methods)

CString (property value)
BSTR (value returned by a method)

Under Visual C++ you need to add an event handler, as specified in the chapter that explains the
usage of the control in this language.

Events fired when a key is pressed

Every key pressed fires the following event:

KeyPress(ByRef KeyAscii as Integer)

KeyAscii holds the key pressed by the user; this variable can be updated to simulate a different key,
or set to 0 to discard the key.

The following events all have the same structure; they are invoked by the respective methods when
Tag is not zero:

AlertKeyPress(ByRef KeyAscii as Integer, ByRef Action as Integer, ByVal Tag as Long)
InputStringKeyPress(ByRef KeyAscii as Integer, ByRef Action as Integer, ByVal Tag as Long)
ListKeyPress(ByRef KeyAscii as Integer, ByRef Action as Integer, ByVal Tag as Long)
MenuKeyPress(ByRef KeyAscii as Integer, ByRef Action as Integer, ByVal Tag as Long)
TextBoxKeyPress(ByRef KeyAscii as Integer, ByRef Action as Integer, ByVal Tag as Long)

where:

KeyAscii as Integer Holds the key pressed by the user; can be updated to simulate a

different key or set to 0 to discard the key
Action as String Determines the action requested; can be updated with one of the values

specified in the methods
Tag as Integer Identification number of the method that fired the event

 33

Other events

SoundRequest (ByVal Frequency as Long, ByVal Duration as Long)

This event is fired by Tone when SilentMode is True; this allows to substitute the default sound
routine with a different one chosen by the user.

 34

Regular expressions

xConsole® supports two kinds of regular expressions (for InputString): extended and simple.

Extended regular expressions

Extended regular expressions are more powerful, but also more complex to use; they consist in a
string of characters where a few are interpreted literally, while others are control characters with a
special meaning. This is a brief explanation about them:

a) '\' followed by a single character x means "match the character x";
b) '^' means "start of line"; '$' means "end of line";
c) '.' means "any character";
d) any character x, without a special meaning, means "match the character x";
e) a string enclosed between [square brackets] means "match any character in the string";
f) ASCII character ranges can be abbreviated as 'a-z0-9'. An isolated closing bracket (']') can

appear only as the first character in the regular expression. A literal '-' can only appear where it
can not be interpreted as a range indicator. If the first character is '^', then any character not
matching the expression will be accepted;

g) a postfix '*' means "accept 0 or more repetitions";
h) a postfix '+' means "accept 1 or more repetitions";
i) a postfix '?' means "accept 0 or 1 repetitions";
j) two adjacent regular expressions (chained) means "match the first, then the second";
k) two regular expressions separated by '|' means "match the first or the second";
l) a regular expressions between parenthesis means "match what is inside the parenthesis".

The evaluation order for operators at the same level of parenthesis is (from highest to lowest
priority):

[] *+? concatenation |

A few examples of extended regular expressions (used by {REXMATCH}, {REXIMATCH} and
others):

"^a" accept any string beginning with 'a'
"^apples" accept any string beginning with 'apples'
"a$" accept any string ending with 'a'
"oranges$" accept any string ending with 'oranges'
"f..e" accept any string of 4 letters beginning with 'f' and ending

with 'e' (e.g. 'free', 'fare' but not 'force')
"[ab]" accept any string containing 'a' or 'b'
"[^ab]" accept any string not containing 'a' and 'b'
"^[0-3][0-9]/[0-1][0-9]/[0-9][0-9]$" accept any date (like "30/12/97")
"su(m|n)" accept any string containing the word 'sum' or 'sun' (not 'su')
"worl?d" accept any string containing "word" or "world"
"^[0-9]*$" accept an empty string or a number containing only the digits

'0'-'9'
"^[a-zA-Z]+[a-zA-Z0-9]*$" accept an identifier name (start with a letter, can contain only

alphanumeric characters, is at least one character long)
"^(hello)|(goodbye)$" accept only the two strings 'hello' and 'goodbye'

 35

Simple regular expressions

Simple regular expressions are easier to use than extended regular expressions; they only include
two special characters:

1. '*' replaces zero, one or more characters
2. '?' replaces a single character

A few examples of simple regular expressions:

"*su?*" accept any string where the two characters 'su' are followed by a single

character (e.g. 'sum', 'sun', etc.)
"c*" accept any string starting with 'c'
"*a" accept any string ending with 'a'
"???" accept any string 3-character long
"*one*two*three*" accept any string including the words 'one', 'two' and 'three' in this order

 36

Software Licence Agreement
Carefully read the following Agreement before installing the software on your PC.

By installing the Software accompanying this document you acknowledge that you have read,
understood and agree to abide by the terms and conditions of this Software Licence Agreement.

SOFTWARE LICENCE
This is a legal agreement (Agreement) between you (either an individual or an entity) and Simone
Zanella Productions (SZP) that sets forth the licence terms and conditions for using the enclosed
Software (Software). Updates of the Software shall also be subject to the terms and conditions of
this Agreement. This Agreement is effective until terminated by destroying the Software and all of
the diskettes and documentation provided in this package, together with all copies, tangible or
intangible. In this Agreement, the term “use” means loading the Software into RAM, as well as
installing it onto a hard disk or other storage device.
The Software is owned by SZP and is protected under Italian copyright laws as well as international
treaty provisions. You must treat the software as you would any other copyrighted material.
The purchase price for the Software grants you a non-exclusive licence to use the Software with the
following restrictions: the Software can be redistributed as part of a package developed by the
purchasing company, but the new package cannot be a derivative of xConsole®.
You may make one copy of the software solely for archival purposes.
You may not rent, sell, lease, sub-licence, time-share or lend the Software to a third party or
otherwise transfer this Licence without written permission from SZP. You may not decompile,
disassemble, reverse-engineer or modify the Software.
It is strictly and expressly prohibited the redistribution of the Software as part of a package that can
be considered generally competitive with the Software.
If you fail to comply with any of the terms and conditions of this Agreement, this Licence will be
terminated and you will be required to immediately return to SZP, the Software, diskettes and
documentation provided in this package, together with all back-up copies. The provisions of this
Agreement which protect the proprietary rights of SZP will continue in force after termination.

LIMITED LIABILITY
The software and documentation are sold AS IS. You assume responsibility for the selection of the
Software to achieve your intended results, and for the installation, use and results obtained from the
Software. SZP makes no representations or warranties with regard to the Software and
documentation, including, but not limited to the implied warranties of merchantability and fitness
for a particular purpose.
SZP shall not be liable for errors or omissions contained in software or manuals, any interruption of
service, loss of business or anticipatory profits and/or for incidental or consequential damages in
connection with the furnishing, performance or use of these materials.

LIMITED WARRANTY
For a period of twentyfour (24) months from date of purchase, SZP warrants to the original
purchaser, that the disks on which the Software is recorded are free from defects in material and
faulty workmanship when subject to normal use and service. If, during this twentyfour (24) month
period, a defect should occur, the disk will be replaced free of charge after it is returned to SZP.
If a defect occurs after the expiration of this warranty period, certain charges may apply. SZP
reserves the right to refuse repeated replacement requests.
This Limited Warranty gives you specific legal rights and you may also have other rights which
vary from state to state. Some states do not allow the limitation or exclusion of implied warranties
or of consequential damages, so the above limitations or exclusions may not apply to you.

 37

You agree that this is the complete and exclusive statement of the Agreement between you and SZP
which supercedes any proposal or prior agreement, oral or written, and any other communications
between us regarding the subject matter of this Agreement. This Agreement shall be construed,
interpreted and governed by the Italian laws and any controversy will be treated by the forum of
Venice – Italy. If any provision of this Agreement is found unenforceable, it will not effect the
validity of the balance of this Agreement, which shall remain valid and enforceable according to its
terms.

 38

Index

AboutBox: method; 11
Alert: method; 11
AlertBackColor: property; 28
AlertButtonBackColor: property; 28
AlertButtonForeColor: property; 28
AlertButtons: property; 28
AlertCurrentButton: property; 28
AlertForeColor: property; 28
AlertFrameForeColor: property; 28
AlertKeyPress: event; 32
AlertText: property; 28
Attribute: method; 13
AttributeJoin: method; 13
AttributeSplit: method; 13
AttributeXY: method; 13
BackgroundColor: property; 28
Box: method; 13
ClearArea: method; 14
Cls: method; 14
ColorizeArea: method; 14
ConsoleTitle: property; 28
CursorType: property; 28
DateType: property; 29
Epoch: property; 29
ForegroundColor: property; 29
Frame: property; 29
Frame3D: property; 29
FrameBackColor: property; 29
FrameChars: property; 29
FrameForeColor: property; 29
FullScreen: property; 29
GetMaxColRow: method; 14
GetXY: method; 14
GotoXY: method; 14
HiColor: method; 15
HPrint: method; 14
HPrintXY: method; 14
InitConsole: method; 15
InputBackColor: property; 29
InputCodePage: property; 29
InputDefault: property; 29
InputForeColor: property; 29
InputMaxLength: property; 29
InputPicture: property; 29
InputStartPos: property; 29
InputString: method; 15
InputStringKeyPress: event; 32
InputStringXY: method; 15
InputWindowLength: property; 29
InputWindowOffset: property; 29
InsertMode: property; 29
Installation; 5
Justification: property; 30
JustificationLength: property; 30
KeyHit: method; 18
KeyInput: method; 18
KeyInputTimed: method; 18
KeyLast: property; 30

KeyPress: event; 32
KeyStuff: method; 18
Licence Agreement; 36
LineCharsHV: property; 30
LineFromTo: method; 18
List: method; 19
ListColumns: property; 30
ListCurrentLine: property; 30
ListCurrentOption: property; 30
ListFrameForeColor: property; 30
ListKeyPress: event; 32
ListMap: property; 30
ListMultiSelect: property; 30
ListOptions: property; 30
ListRows: property; 30
ListSelection: property; 30
ListTitle: property; 30
ListWindowOffset: property; 30
ListXY: method; 19
MaxCol: property; 30
MaxRow: property; 30
Menu: method; 21
MenuCurrentOption: property; 30
MenuFrameForeColor: property; 30
MenuKeyPress: event; 32
MenuOptions: property; 30
MenuUnselectable: property; 30
MenuXY: method; 21
OffsetX: property; 30
OffsetY: property; 30
OSD: method; 22
OSDRestore: method; 23
OutputCodePage: property; 30
Pattern: property; 30
Regular expressions: extended; 34; simple; 35
Resize: method; 23
ReverseArea: method; 23
ScoreboardBackColor: property; 30
ScoreboardForeColor: property; 30
ScoreboardJustification: property; 30
ScoreboardLength: property; 30
ScoreboardStatus: property; 30
ScoreboardX: property; 30
ScoreboardY: property; 30
ScreenClear: method; 23
ScreenRestore: method; 24
ScreenSave: method; 24
ScrollHorizontally: method; 24
ScrollVertically: method; 24
SelectedBackColor: property; 30
SelectedForeColor: property; 30
SettingsRestore: method; 24
SettingsSave: method; 24
Shadow: method; 24
ShadowMode: property; 30
ShutdownConsole: method; 25
SilentMode: property; 31
SoundRequest: event; 33

 39

SPrint: method; 23
SPrintXY: method; 23
TextBox: method; 25
TextBoxBackColor: property; 31
TextBoxColumns: property; 31
TextBoxDefault: property; 31
TextBoxForeColor: property; 31
TextBoxKeyPress: event; 32
TextBoxRows: property; 31
TextBoxStartPosition: property; 31
TextBoxXY: method; 25
ThumbElevator: method; 27

ThumbElevatorChars: property; 31
TitleBackColor: property; 31
TitleForeColor: property; 31
Tone: method; 27
UnselectableBackColor: property; 31
UnselectableForeColor: property; 31
UnselectedBackColor: property; 31
UnselectedForeColor: property; 31
Visual Basic: using under; 6
Visual C++: using under; 8
X: property; 31
Y: property; 31

		2009-03-12T16:47:32+0100
	Simone Zanella
	I am the author of this document

